University of Tokyo Project Lecturer: Takeshi Sato

Takeshi Sato, Project Lecturer

Sato_DSC_7824Position
Project Lecturer, Photon Science Center, School of Engineering, the University of Tokyo

Additional Post
Project Lecturer, Department of Nuclear Engineering and Management, School of Engineering, the University of Tokyo

Contact information
sato●atto.t.u-tokyo.ac.jp
Please replace ● with @.

Career

Education

  1. 2008 Ph.D., Department of Applied Chemistry, School of Engineering, The University of Tokyo
  2. 2005 M.Sc., Department of Applied Chemistry, School of Engineering, The University of Tokyo
  3. 2003 B.Sc., Department of Applied Chemistry, Faculty of Engineering, The University of Tokyo

Work Experiences

  1. 2015 – present   Project Lecturer, Photon Science Center, School of Engineering, the University of Tokyo
  2. 2010 – 2015       Project Research Associate, Photon Science Center, School of Engineering, the University of Tokyo
  3. 2008 – 2010      Lecturer, Faculty of Science and Engineering, Waseda University

Grants

  1. 2014 Grant-in-Aid for Scientific Research (C) (KAKENHI-Kiban C)
  2. 2011 Grant-in-Aid for Young Scientists (B) (KAKENHI-Wakate B)
  3. 2009 Grant-in-Aid for Young Scientists (B) (KAKENHI-Wakate B)
  4. 2005 DC1 Research Fellowship for Young Scientists offered by Japan Society for the Promotion of Science (JSPS)

Journals

  1. Ryoji Anzaki, Takeshi Sato, Kenichi L. Ishikawa, Fully General Time-Dependent Multiconfiguration Self-Consistent-Field Method for the Electron-Nuclear Dynamics, Phys. Chem. Chem. Phys., 19, 22008~22015 (2017). (DOI: 10.1039/C7CP02086D)
  2. Iliya Tikhomirov, Takeshi Sato, and Kenichi L. Ishikawa, High-harmonic generation enhanced by dynamical electron correlation, Phys. Rev. Lett. 118, 203202-1~5 (May, 2017). (DOI: 10.1103/PhysRevLett.118.203202)
  3. Takuya Ikemachi, Yasushi Shinohara, Takeshi Sato, Junji Yumoto, Makoto Kuwata-Gonokami, and Kenichi L. Ishikawa, Trajectory analysis of high-order harmonic generation from periodic crystals, Phys. Rev. A 95, 043416-1~8 (Apr., 2017). (DOI:10.1103/PhysRevA.95.043416)
  4. Fabian Lackner, Iva Březinová, Takeshi Sato, Kenichi L. Ishikawa, and Joachim Burgdörfer, High-harmonic spectra from time-dependent two-particle reduced-density-matrix theory, Phys. Rev. A 95, 033414 – Published 16 March 2017. (DOI: 10.1103/PhysRevA.95.033414)
  5. T. Sato, K. L. Ishikawa, I. Březinová, F. Lackner, S. Nagele, and J. Burgdörfer, “Time-dependent complete-active-space self-consistent-field method for atoms: Application to high-order harmonic generation”, Phys. Rev. A 94, 023405 (Aug., 2016).
  6. R. Sawada, T. Sato, and K. L. Ishikawa, “Implementation of the multiconfiguration time-dependent Hartree-Fock method for general molecules on a multi-resolution Cartesian grid“, Phys. Rev. A 93, 023434 (Feb., 2016). 
  7. K. L. Ishikawa and T. Sato, “A Review on Ab Initio Approaches for Multielectron Dynamics”, IEEE J. Sel. Topics Quantum Electron. 21 (5), 8700916 (2015). (invited review)
  8. T. Sato and K. L. Ishikawa, “Time-dependent multiconfiguration self-consistent-field method based on occupation restricted multiple active space model for multielectron dynamics in intense laser fields”, Phys. Rev. A 91. 023417 (2015).
  9. F. Lackner, I. Břesinová, T. Sato, K. L. Ishikawa, and J. Burgdörfer, “Propagating two-particle reduced density matrices without wavefunctions”, Phys. Rev. A 91, 023412 (2015).
  10. T. Sato and K. L. Ishikawa, “The structure of approximate two electron wavefunction in intense laser driven ionization dynamics”, J. Phys. B, 47, 204031 (12 pages) (2014).
  11. R. Sawada, T. Sato, and K. L. Ishikawa, “Analysis of strong-field enhanced ionization of molecules using Bohmian trajectories”, Phys. Rev. A 90, 023404-1-8 (8 pages) (2014).
  12. M. A. Addicoat, Y. Nishimura, T. Sato, T. Tsuneda, and S. Irle, “Stochastic Search of Molecular Cluster Interaction Energy Surfaces with Coupled Cluster Quality Prediction. The Phenylacetylene Dimer”, J. Chem. Theory Comput. 9 (8), 3848-3854 (2013).
  13. R. Kar, J-W. Song, T. Sato, and K. Hirao, “Long-range corrected density functionals combined with local response dispersion: A promising method for weak interactions”, J. Comput. Chem. 34 (27), 2353-2359 (2013).
  14. T. Sato and K. L. Ishikawa, “Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields”, Phys. Rev. A 88 (2), 023402/1-15 (2013).
  15. Y. Ikabata, T. Sato, and H. Nakai, “Self-consistent field treatment and analytical energy gradient of local response dispersion method”, Int. J. Quant. Chem. 113 (3), 257-262 (2013).
  16. R. Nakanishi, T. Sato, K. Yagi, and T. Nagata, “Hydrogen-Bond Network Transformation in Water-Cluster Anions Induced by the Complex Formation with Benzene”, J. Phys. Chem. Lett. 3 (23), 3571-3575 (2012).
  17. T. Sato and K. L. Ishikawa, “Assessment of time-dependent unrestricted Hartree-Fock method for electron dynamics in intense laser fields”, IEEJ Trans. 132 (8), 1297-1298 (2012).
  18. Y. Furukawa, Y. Nabekawa, T. Okino, A. A. Eilanlou, E. J. Takahashi, P. Lan, K. L. Ishikawa, T. Sato, K. Yamanouchi, and K. Midorikawa, “Resolving vibrational wave-packet dynamics of D2+ using multi color probe pulses”, Opt. Lett. 37 (14), 2922-2924 (2012).
  19. J-W. Song, T. Tsuneda, T. Sato, and K. Hirao, “An examination of density functional theories on isomerization energy calculations of organic molecules”, Theor. Chem. Acc. 130, 851-857 (2011).
  20. Y. Nakatsuka, T. Tsuneda, T. Sato, and K. Hirao, “Theoretical Investigations on the photo-induced phase transition mechanism of tetrathiafulvalene-p-chloranil”, J. Chem. Theory. Compute. 7, 2233-2239 (2011).
  21. T. Sato and H. Nakai, “Local response dispersion method II. Generalized multicenter interactions”, J. Chem. Phys. 133, 194101/1-9 (2010).
  22. Y. Kurashige, T. Nakajima, T. Sato, and K. Hirao, “Efficient evaluation of the Coulomb force in Gaussian and finite-element Coulomb method”, J. Chem. Phys. 132, 244107/1-7 (2010).
  23. J-W. Song, T. Tsuneda, T. Sato, and K. Hirao, “Calculations of Alkane Energies Using Long-Range Corrected DFT Combined with Intramolecular van der Waals Correlation”, Org. Lett. 12, 1440-1443 (2010).
  24. T. Sato and H. Nakai, “Density functional method including weak interactions: Dispersion coefficients based on the local response approximation”, J. Chem. Phys. 131, 224104/1-12 (2009).
  25. T. Matsui, H. Miyachi, Y. Nakanishi, Y. Shigeta, T. Sato, Y. Kitagawa, M. Okumura, and K. Hirao, “Theoretical Studies on Sulfur and Metal Cation (Cu(II), Ni(II), Pd(II), and Pt(II))- Containing Artificial DNA”, J. Phys. Chem. B 113, 12790-12795 (2009).
  26. T. Matsui, T. Sato, Y. Shigeta, and K. Hirao, “Sequence dependent proton-transfer reaction in stacked GC pair II: The origin of stabilities of proton-transfer products”, Chem. Phys. Lett. 478, 238-242 (2009).
  27. T. Matsui, T. Sato, Y. Shigeta, “Sequence dependent proton-transfer reaction in stacked GC pair I: The possibility of proton- transfer reactions”, Int. J. Quant. Chem. 109, 2168-2177 (2009).
  28.  T. Matsui, H. Miyachi, T. Sato, Y. Shigeta, and K. Hirao, “Structural Origin of Cooper Ion Containing Artificial DNA: A Density Functional Study”, J. Phys. Chem. B 112, 16960-16965 (2008).
  29. T. Tsuneda and T. Sato, “First-Principle van der Waals Force Calculations Based on Density Functional Theory”, J. Phys. Soc. J. 64 (4), 291-296 (2008).
  30. K. Yagi, Y. Okano, T. Sato, Y. Kawashima, T. Tsuneda, and K. Hirao, “Water cluster anions studied by the long-range corrected density functional theory”, J. Phys. Chem. A 112, 9845-9853 (2008).
  31. S. Tokura, T. Sato, T. Tsuneda, T. Nakajima, and K. Hirao, “A dual-level state-specific time-dependent density-functional theory”, J. Comput. Chem. 29, 1187-1197 (2008).
  32. J-W. Song, S. Tokura, T. Sato, T. Tsuneda, and K. Hirao, “An improved long-range corrected hybrid exchange-correlation functional including a short-range Gaussian attenuation (LCgau-BOP)”, J. Chem. Phys. 127, 154109/1-6 (2007).
  33. T. Sato, T. Tsuneda, and K. Hirao, “Long-range corrected density functional study on weakly bound systems: Balanced descriptions of various types of molecular interactions”, J. Chem. Phys. 126, 234114/1-11 (2007).
  34. T. Sato, T. Tsuneda, and K. Hirao, “A density-functional study on pi-aromatic interaction: Benzene dimer and naphthalene dimer”, J. Chem. Phys. 123, 104307/1-10 (2005).
  35. T. Sato, T. Tsuneda, and K. Hirao, “Van der Waals interactions studied by density functional theory”, Mol. Phys. 103, 1151-1164 (2005).

Reviews

  1. 常田貴夫、佐藤健、“ファンデルワールス力の第一原理計算法における進展”、日本物理学会:特集号「電子状態の第一原理計算の現状と課題」(2009).

Invited Presentation

  1. Takeshi Sato, Multielectron dynamics of atoms and molecules in strong laser fields, International Conference on Photonic Electronic and Atomic Collisions, Cairns Convention Centre, Queensland, Australia, Jul. 27, 2017 (Invited)
  2. T. Sato and Y. Shinohara, “TDDFT Response and Dispersion Energy Without Unoccupied Orbitals”, CECAM Workshop Density- and response density-based models for Intermolecular Interactions in Molecular Assemblies and in Solids, Nancy, France, June (2016).
  3. T. Sato, “Two electron dynamics in intense laser fields”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 11, Tokyo, June (2014).
  4. T. Sato “Time-dependent wavefunction theories for atoms and molecules in intense laser fields”, ViCoM Young Researchers Meeting, Vienna, Austria, April (2014).
  5. T. Sato and K. L. Ishikawa “Time-dependent MCSCF methods for multielectron dynamics in intense laser fields”, 5th JCS International Symposium on Theoretical Chemistry, Nara, Dec. (2013).
  6. T. Sato, “Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 7, Tokyo, June (2013).
  7. T. Sato, “Multielectron dynamics in intense laser fields: TD-CASSCF and TD-APSG approaches”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 6, Tokyo, Jan. (2013).
  8. 佐藤健、“強レーザー場中の多電子ダイナミクス:多配置波動関数理論の開発と応用”、スーパーコンピュータワークショップ2013「理論と計算科学による新たな展開と可能性を探る」、自然科学研究機構、1月(2013).
  9. T. Sato and K. L. Ishikawa, “Multiconfigurational wavefunction approaches to electron dynamics in intense laser fields”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 5, Tokyo, July (2012).
  10. T. Sato, “Van der Waals interaction in DFT: Dispersion Correction From Local-Response Approximation”, ISSP-CMSI international workshop on Material Simulation in Petaflops era (MASP2012), Kashiwa, July (2012).
  11. T. Sato and K. L. Ishikawa, “Multi-electron dynamics intense laser field: Simple multi-configurational time-dependent approaches”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 4, Tokyo, Feb. (2012).
  12. 佐藤健、“量子化学的手法による強光子場現象の第一原理シミュレーション”、ミニシンポジウム「第一原理計算科学の最前線」、東北大学多元物質科学研究所、9月(2011).
  13. T. Sato, “Local response dispersion method with non-local atomic polarizabilities”, CECAM workshop on van der Waals forces in DFT, RPA, and beyond, Lausanne, Switzerland, June (2010).

Awards

  1. 平成26年度総合研究奨励賞(一般財団法人 総合研究奨励会、2015).
  2. 優秀論文発表賞、“分散力を記述できる密度汎関数理論の開発”、(電気学会電子・情報・システム部門研究会、2012).
  3. Journal of Chemical Physics: 2009 Editor’s choice, “Density functional method including weak interactions: Dispersion coefficients based on the local response approximation”, (American Institute of Physics, 2009).
  4. Young Investigator award, “Density functional method including weak interactions: dispersion coefficients based on the local response approximation” (CREST International Symposium on Theory and Simulation of Complex Molecular Systems, Kyoto, 2009).
  5. 優秀講演賞、“弱い相互作用を記述する密度汎関数理論の開発:局所応答近似に基づく分散力計算”、(第3回分子科学討論会、2009).