University of Tokyo Associate Professor: Takeshi Sato

Takeshi Sato, Associate Professor

Sato_DSC_7824Position
Associate Professor, Department of Nuclear Engineering and Management,
School of Engineering,
The University of Tokyo

Contact information
sato●atto.t.u-tokyo.ac.jp
Please replace ● with @.

Career

Education

  1. 2008 Ph.D., Department of Applied Chemistry, School of Engineering, The University of Tokyo
  2. 2005 M.Sc., Department of Applied Chemistry, School of Engineering, The University of Tokyo
  3. 2003 B.Sc., Department of Applied Chemistry, Faculty of Engineering, The University of Tokyo

Work Experiences

  1. 2018-present    Associate Professor, Department of Nuclear Engineering and Management,
    ………………………….School of Engineering, The University of Tokyo
  2. 2015 – 2017      Project Lecturer, Photon Science Center, School of Engineering, the University of Tokyo
  3. 2010 – 2015      Project Research Associate, Photon Science Center, School of Engineering, the University of Tokyo
  4. 2008 – 2010      Lecturer, Faculty of Science and Engineering, Waseda University

Grants

  1. 2014 Grant-in-Aid for Scientific Research (C) (KAKENHI-Kiban C)
  2. 2011 Grant-in-Aid for Young Scientists (B) (KAKENHI-Wakate B)
  3. 2009 Grant-in-Aid for Young Scientists (B) (KAKENHI-Wakate B)
  4. 2005 DC1 Research Fellowship for Young Scientists offered by Japan Society for the Promotion of Science (JSPS)

Journals

  1. Yuki Orimo, Takeshi Sato, Kenichi L. Ishikawa, Use of Erfgau Potential for Simulations of Multielectron Dynamics in Intense Laser Pulses,  J. Phys. Chem. A 2023, 127, 49, 10499–10505 (Nov. 30, 2023)(DOI: 10.1021/acs.jpca.3c06530)
  2. Takeshi Sato, Himadri Pathak, Yuki Orimo, Kenichi L. Ishikawa, Time-dependent multiconfiguration self-consistent-field and time-dependent optimized coupled-cluster methods for intense laser-driven multielectron dynamics, Canadian Journal of Chemistry (14 May 2023)(DOI: 10.1139/cjc-2022-0297)
  3. Yuki Orimo, Takeshi Sato, Kenichi L. Ishikawa, Efficient simulation of multielectron dynamics in molecules under intense laser pulses: implementation of the multiconfiguration time-dependent Hartree–Fock method based on the adaptive finite element method, Canadian Journal of Chemistry (12 May 2023)(DOI: 10.1139/cjc-2022-0280)
  4. Nobuyuki Yoshioka, Takeshi Sato, Yuya O. Nakagawa, Yu-ya Ohnishi, and Wataru Mizukami, Variational quantum simulation for periodic materials, Phys. Rev. Research 4, 013052-1-8 (26 Jan. 2022) (DOI: 10.1103/PhysRevResearch.4.013052)
  5. Winfried Auzinger, Iva Březinová, Alexander Grosz, Harald Hofstätter, Othmar Koch, and Takeshi SatoEfficient adaptive exponential time integrators for nonlinear Schrödinger equations with nonlocal potential, J. Coumput. Math. Data Sci. 1, 100014-1-22 (Nov. 2021) (DOI: 10.1016/j.jcmds.2021.100014)
  6. Yang Li, Takeshi Sato, and Kenichi L. Ishikawa, Implementation of a time-dependent multiconfiguration self-consistent-field method for coupled electron-nuclear dynamics in diatomic molecules driven by intense laser pulses, Phys. Rev. A 104, 043104-1-16 (5 Oct. 2021) (DOI: 10.1103/PhysRevA.104.043104)
  7. H. Pathak, T. Sato, and K. L. Ishikawa, Time-dependent optimized coupled-cluster method for multielectron dynamics IV: Approximate consideration of the triple excitation amplitudes, J. Chem. Phys.154, 234104-1-12,(17 June 2021) (DOI:10.1063/5.0054743)
  8. Yuki Orimo, Oyunbileg Tugs, Takeshi Sato, Daehyun You, Kiyoshi Ueda and Kenichi L Ishikawa, Interferometric extraction of photoionization-path amplitudes and phases from time-dependent multiconfiguration self-consistent-field simulations,  J. Phys. B: At. Mol. Opt. Phys. 54, 074001-1-20 (22 Apr, 2021) (DOI: 10.1088/1361-6455/abe67e)
  9. Daehyun You, Oyunbileg Tugs, Yuki Orimo, Takeshi Sato , Kenichi L. Ishikawa, et al., New Method for Measuring Angle-Resolved Phases in Photoemission, Phys. Rev. X 10, 031070-1-14 (30 Sep. 2020)(DOI: 10.1103/PhysRevX.10.031070)
  10. V.V.Kim, G.S.Boltaev, M . Iqbal, N.A .Abbasi, H .Al-Harmi, I .S .Wahyutama, T. Sato, K .L .Ishikawa, R .A .Ganeev, and A. S .Alnase, Resonance enhancement of harmonics in the vicinity of 32 nm spectral range during propagation of femtosecond pulses through the molybdenum plasma, Journal of Physics B 53, 195401-1-12 (25 Aug. 2020) (DOI: 10.1088/1361-6455/aba581)
  11. Himadri Pathak, Takeshi Sato and Kenichi L. Ishikawa, Time-dependent optimized coupled-cluster method for multielectron dynamics. II. A coupled electron-pair approximation, J. Chem. Phys. 152-1-10, 124115 (27 March, 2020).(DOI: 10.1063/1.5143747)
  12. Michele Di Fraia, Oksana Plekan, Carlo Callegari, Kevin C. Prince, Luca Giannessi, Enrico Allaria, Laura Badano, Giovanni De Ninno, Mauro Trovò, Bruno Diviacco, David Gauthier, Najmeh Mirian, Giuseppe Penco, Primož Rebernik Ribič, Simone Spampinati, Carlo Spezzani, Giulio Gaio, Yuki Orimo, Oyunbileg Tugs, Takeshi Sato, Kenichi L. Ishikawa , Paolo Antonio Carpeggiani, Tamás Csizmadia, Miklós Füle, Giuseppe Sansone, Praveen KumarMaroju, Alessandro D’Elia, Tommaso Mazza, Michael Meyer, Elena V. Gryzlova, Alexei N. Grum-Grzhimailo, Daehyun You, and Kiyoshi Ueda, Complete Characterization of Phase and Amplitude of Bichromatic Extreme Ultraviolet Light,  Phys. Rev. Lett. 123, 213904 1~7 (22 November 2019)(DOI: 10.1103/PhysRevLett.123.213904)
  13. Oakum Teramura, Takeshi Sato, and Kenichi L. Ishikawa, Implementation of a gauge-invariant time-dependent configuration-interaction-singles method for three-dimensional atoms, Phys. Rev. A 100, 043402 (4 October 2019).(DOI: 10.1103/PhysRevA.100.043402)
  14. Yuki Orimo, Karoly Tokesi, Takeshi Sato, and Kenichi L. Ishikawa, Comparison between quantum and classical calculations for above threshold ionization of argon, Eur. Phys. J. D(2019)73: 153-1~5(25 July 2019).(DOI: 10.1140/epjd/e2019-100066-y)
  15. Yuki Orimo, Takeshi Sato, and Kenichi L. Ishikawa, Application of the time-dependent surface flux method to the time-dependent multiconfiguration self-consistent-field method, Rev. A 100,013419-1~8 (29 July 2019).(DOI: 10.1103/PhysRevA.100.013419)
  16. Imam S. Wahyutama, Takeshi Sato, and Kenichi L. Ishikawa, Time-dependent multiconfiguration self-consistent-field study on resonantly enhanced high-order harmonic generation from transition-metal elements, Phys. Rev. A99,063420-1~7 (20 June 2019).(DOI: 10.1103/PhysRevA.99.06342)
  17. Yang Li, Takeshi Sato, and Kenichi L. Ishikawa, High-order harmonic generation enhanced by laser-induced electron recollision, Phys. Rev. A 99, 043401-1~5(1Apr.2019).(DOI: 10.1103/PhysRevA.99.043401)
  18. Ryoji Anzaki, Yasushi Shinohara, Takeshi Sato, Kenichi Ishikawa, Gauge invariance beyond the electric dipole approximation, Phys. Rev. A 98, 063410-1~8(Dec.,2018).(DOI:10.1103/PhysRevA.98.063410)
  19. Takuya Ikemachi, Yasushi Shinohara, Takeshi Sato, Junji Yumoto, Makoto Kuwata-Gonokami, and Kenichi L. Ishikawa, Time-dependent Hartree-Fock study of electron-hole interaction effects on high-order harmonic generation from periodic crystals, Phys. Rev. A 98, 023415-1~8 (17 August 2018).(DOI:10.1103/PhysRevA.98.023415)
  20. Takeshi Sato, Takuma Teramura and Kenichi L. Ishikawa, Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method, Appl. Sci. 2018, 8(3), 433-1~14 (2018),(DOI: 10.3390/app8030433)
  21. Yuki Orimo, Takeshi Sato, Armin Scrinzi, and Kenichi L. Ishikawa, Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method, Phys.Rev. A 97, 023423-1~9 (Feb.2018). (DOI:10.1103/PhysRevA.97.023423)
  22. Takeshi Sato, Himadri Pathak, Yuki Orimo, Kenichi L. Ishikawa, Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics, The Journal of Chemical Physics, 148, 051101-1~8(2018).(DOI: 10.1063/1.5020633)
  23. Y. Nishimura, T. Tsuneda, T. Sato, Michio Katouda, and S. Irle, Quantum Chemical Estimation of Acetone Physisorption on Graphene Using Combined Basis Set and Size Extrapolation Schemes, J. Phys. Chem. C, 121 (16), 8999-9010 (2017)
  24. Ryoji Anzaki, Takeshi Sato, Kenichi L. Ishikawa, Fully General Time-Dependent Multiconfiguration Self-Consistent-Field Method for the Electron-Nuclear Dynamics, Phys. Chem. Chem. Phys., 19, 22008~22015 (2017). (DOI: 10.1039/C7CP02086D)
  25. Iliya Tikhomirov, Takeshi Sato, and Kenichi L. Ishikawa, High-harmonic generation enhanced by dynamical electron correlation, Phys. Rev. Lett. 118, 203202-1~5 (May, 2017). (DOI: 10.1103/PhysRevLett.118.203202)
  26. Takuya Ikemachi, Yasushi Shinohara, Takeshi Sato, Junji Yumoto, Makoto Kuwata-Gonokami, and Kenichi L. Ishikawa, Trajectory analysis of high-order harmonic generation from periodic crystals, Phys. Rev. A 95, 043416-1~8 (Apr., 2017). (DOI:10.1103/PhysRevA.95.043416)
  27. Fabian Lackner, Iva Březinová, Takeshi Sato, Kenichi L. Ishikawa, and Joachim Burgdörfer, High-harmonic spectra from time-dependent two-particle reduced-density-matrix theory, Phys. Rev. A 95, 033414 – Published 16 March 2017. (DOI: 10.1103/PhysRevA.95.033414)
  28. T. Sato, K. L. Ishikawa, I. Březinová, F. Lackner, S. Nagele, and J. Burgdörfer, “Time-dependent complete-active-space self-consistent-field method for atoms: Application to high-order harmonic generation”, Phys. Rev. A 94, 023405 (Aug., 2016).
  29. R. Sawada, T. Sato, and K. L. Ishikawa, “Implementation of the multiconfiguration time-dependent Hartree-Fock method for general molecules on a multi-resolution Cartesian grid“, Phys. Rev. A 93, 023434 (Feb., 2016). 
  30. K. L. Ishikawa and T. Sato, “A Review on Ab Initio Approaches for Multielectron Dynamics”, IEEE J. Sel. Topics Quantum Electron. 21 (5), 8700916 (2015). (invited review)
  31. T. Sato and K. L. Ishikawa, “Time-dependent multiconfiguration self-consistent-field method based on occupation restricted multiple active space model for multielectron dynamics in intense laser fields”, Phys. Rev. A 91. 023417 (2015).
  32. F. Lackner, I. Břesinová, T. Sato, K. L. Ishikawa, and J. Burgdörfer, “Propagating two-particle reduced density matrices without wavefunctions”, Phys. Rev. A 91, 023412 (2015).
  33. T. Sato and K. L. Ishikawa, “The structure of approximate two electron wavefunction in intense laser driven ionization dynamics”, J. Phys. B, 47, 204031 (12 pages) (2014).
  34. R. Sawada, T. Sato, and K. L. Ishikawa, “Analysis of strong-field enhanced ionization of molecules using Bohmian trajectories”, Phys. Rev. A 90, 023404-1-8 (8 pages) (2014).
  35. M. A. Addicoat, Y. Nishimura, T. Sato, T. Tsuneda, and S. Irle, “Stochastic Search of Molecular Cluster Interaction Energy Surfaces with Coupled Cluster Quality Prediction. The Phenylacetylene Dimer”, J. Chem. Theory Comput. 9 (8), 3848-3854 (2013).
  36. R. Kar, J-W. Song, T. Sato, and K. Hirao, “Long-range corrected density functionals combined with local response dispersion: A promising method for weak interactions”, J. Comput. Chem. 34 (27), 2353-2359 (2013).
  37. T. Sato and K. L. Ishikawa, “Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields”, Phys. Rev. A 88 (2), 023402/1-15 (2013).
  38. Y. Ikabata, T. Sato, and H. Nakai, “Self-consistent field treatment and analytical energy gradient of local response dispersion method”, Int. J. Quant. Chem. 113 (3), 257-262 (2013).
  39. R. Nakanishi, T. Sato, K. Yagi, and T. Nagata, “Hydrogen-Bond Network Transformation in Water-Cluster Anions Induced by the Complex Formation with Benzene”, J. Phys. Chem. Lett. 3 (23), 3571-3575 (2012).
  40. T. Sato and K. L. Ishikawa, “Assessment of time-dependent unrestricted Hartree-Fock method for electron dynamics in intense laser fields”, IEEJ Trans. 132 (8), 1297-1298 (2012).
  41. Y. Furukawa, Y. Nabekawa, T. Okino, A. A. Eilanlou, E. J. Takahashi, P. Lan, K. L. Ishikawa, T. Sato, K. Yamanouchi, and K. Midorikawa, “Resolving vibrational wave-packet dynamics of D2+ using multi color probe pulses”, Opt. Lett. 37 (14), 2922-2924 (2012).
  42. J-W. Song, T. Tsuneda, T. Sato, and K. Hirao, “An examination of density functional theories on isomerization energy calculations of organic molecules”, Theor. Chem. Acc. 130, 851-857 (2011).
  43. Y. Nakatsuka, T. Tsuneda, T. Sato, and K. Hirao, “Theoretical Investigations on the photo-induced phase transition mechanism of tetrathiafulvalene-p-chloranil”, J. Chem. Theory. Compute. 7, 2233-2239 (2011).
  44. T. Sato and H. Nakai, “Local response dispersion method II. Generalized multicenter interactions”, J. Chem. Phys. 133, 194101/1-9 (2010).
  45. Y. Kurashige, T. Nakajima, T. Sato, and K. Hirao, “Efficient evaluation of the Coulomb force in Gaussian and finite-element Coulomb method”, J. Chem. Phys. 132, 244107/1-7 (2010).
  46. J-W. Song, T. Tsuneda, T. Sato, and K. Hirao, “Calculations of Alkane Energies Using Long-Range Corrected DFT Combined with Intramolecular van der Waals Correlation”, Org. Lett. 12, 1440-1443 (2010).
  47. T. Sato and H. Nakai, “Density functional method including weak interactions: Dispersion coefficients based on the local response approximation”, J. Chem. Phys. 131, 224104/1-12 (2009).
  48. T. Matsui, H. Miyachi, Y. Nakanishi, Y. Shigeta, T. Sato, Y. Kitagawa, M. Okumura, and K. Hirao, “Theoretical Studies on Sulfur and Metal Cation (Cu(II), Ni(II), Pd(II), and Pt(II))- Containing Artificial DNA”, J. Phys. Chem. B 113, 12790-12795 (2009).
  49. T. Matsui, T. Sato, Y. Shigeta, and K. Hirao, “Sequence dependent proton-transfer reaction in stacked GC pair II: The origin of stabilities of proton-transfer products”, Chem. Phys. Lett. 478, 238-242 (2009).
  50. T. Matsui, T. Sato, Y. Shigeta, “Sequence dependent proton-transfer reaction in stacked GC pair I: The possibility of proton- transfer reactions”, Int. J. Quant. Chem. 109, 2168-2177 (2009).
  51.  T. Matsui, H. Miyachi, T. Sato, Y. Shigeta, and K. Hirao, “Structural Origin of Cooper Ion Containing Artificial DNA: A Density Functional Study”, J. Phys. Chem. B 112, 16960-16965 (2008).
  52. T. Tsuneda and T. Sato, “First-Principle van der Waals Force Calculations Based on Density Functional Theory”, J. Phys. Soc. J. 64 (4), 291-296 (2008).
  53. K. Yagi, Y. Okano, T. Sato, Y. Kawashima, T. Tsuneda, and K. Hirao, “Water cluster anions studied by the long-range corrected density functional theory”, J. Phys. Chem. A 112, 9845-9853 (2008).
  54. S. Tokura, T. Sato, T. Tsuneda, T. Nakajima, and K. Hirao, “A dual-level state-specific time-dependent density-functional theory”, J. Comput. Chem. 29, 1187-1197 (2008).
  55. J-W. Song, S. Tokura, T. Sato, T. Tsuneda, and K. Hirao, “An improved long-range corrected hybrid exchange-correlation functional including a short-range Gaussian attenuation (LCgau-BOP)”, J. Chem. Phys. 127, 154109/1-6 (2007).
  56. T. Sato, T. Tsuneda, and K. Hirao, “Long-range corrected density functional study on weakly bound systems: Balanced descriptions of various types of molecular interactions”, J. Chem. Phys. 126, 234114/1-11 (2007).
  57. T. Sato, T. Tsuneda, and K. Hirao, “A density-functional study on pi-aromatic interaction: Benzene dimer and naphthalene dimer”, J. Chem. Phys. 123, 104307/1-10 (2005).
  58. T. Sato, T. Tsuneda, and K. Hirao, “Van der Waals interactions studied by density functional theory”, Mol. Phys. 103, 1151-1164 (2005).

Reviews

  1. 常田貴夫、佐藤健、“ファンデルワールス力の第一原理計算法における進展”、日本物理学会:特集号「電子状態の第一原理計算の現状と課題」(2009).

Invited Presentation

  1. Takeshi Sato, “Time-Dependent Wavefunction- Based Methods for Intense Laser- Driven Multielectron Dynamics”, 2nd International Conference on Photonics Research, The Mirage Park Resort, Antalya, Turkey, November 8, 2019
  2. Takeshi Sato, “Time-dependent optimized coupled-cluster method for intense laser-driven multielectron dynamics”, New Developments in Coupled-Cluster Theory 2019, Telluride Intermediate School, Telluride, United States, July 29, 2019
  3.  Takeshi Sato, “Time-dependent wavefunction-based methods for intense laser-driven multielectron dynamics”, 5th International Symposium on Intense Field, Short Wavelength Atomic and Molecular Processes (ISWAMP 2019), Cité Internationale Universitaire de Paris, France, July 21, 2019
  4. Takeshi Sato, “Time-dependent optimized coupled-cluster method for intense laser-driven multielectron dynamics”, 7th JCS (Japan-Czech-Slovak) S​ymposium, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic, May 22, 2018 (Invited)
  5. Takeshi Sato, Multielectron dynamics of atoms and molecules in strong laser fields, International Conference on Photonic Electronic and Atomic Collisions, Cairns Convention Centre, Queensland, Australia, Jul. 27, 2017 (Invited)
  6. T. Sato and Y. Shinohara, “TDDFT Response and Dispersion Energy Without Unoccupied Orbitals”, CECAM Workshop Density- and response density-based models for Intermolecular Interactions in Molecular Assemblies and in Solids, Nancy, France, June (2016).
  7. T. Sato, “Two electron dynamics in intense laser fields”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 11, Tokyo, June (2014).
  8. T. Sato “Time-dependent wavefunction theories for atoms and molecules in intense laser fields”, ViCoM Young Researchers Meeting, Vienna, Austria, April (2014).
  9. T. Sato and K. L. Ishikawa “Time-dependent MCSCF methods for multielectron dynamics in intense laser fields”, 5th JCS International Symposium on Theoretical Chemistry, Nara, Dec. (2013).
  10. T. Sato, “Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 7, Tokyo, June (2013).
  11. T. Sato, “Multielectron dynamics in intense laser fields: TD-CASSCF and TD-APSG approaches”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 6, Tokyo, Jan. (2013).
  12. 佐藤健、“強レーザー場中の多電子ダイナミクス:多配置波動関数理論の開発と応用”、スーパーコンピュータワークショップ2013「理論と計算科学による新たな展開と可能性を探る」、自然科学研究機構、1月(2013).
  13. T. Sato and K. L. Ishikawa, “Multiconfigurational wavefunction approaches to electron dynamics in intense laser fields”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 5, Tokyo, July (2012).
  14. T. Sato, “Van der Waals interaction in DFT: Dispersion Correction From Local-Response Approximation”, ISSP-CMSI international workshop on Material Simulation in Petaflops era (MASP2012), Kashiwa, July (2012).
  15. T. Sato and K. L. Ishikawa, “Multi-electron dynamics intense laser field: Simple multi-configurational time-dependent approaches”, International workshop on theory for attosecond quantum dynamics (IWTAQD) 4, Tokyo, Feb. (2012).
  16. 佐藤健、“量子化学的手法による強光子場現象の第一原理シミュレーション”、ミニシンポジウム「第一原理計算科学の最前線」、東北大学多元物質科学研究所、9月(2011).
  17. T. Sato, “Local response dispersion method with non-local atomic polarizabilities”, CECAM workshop on van der Waals forces in DFT, RPA, and beyond, Lausanne, Switzerland, June (2010).

Awards

  1. 平成26年度総合研究奨励賞(一般財団法人 総合研究奨励会、2015).
  2. 優秀論文発表賞、“分散力を記述できる密度汎関数理論の開発”、(電気学会電子・情報・システム部門研究会、2012).
  3. Journal of Chemical Physics: 2009 Editor’s choice, “Density functional method including weak interactions: Dispersion coefficients based on the local response approximation”, (American Institute of Physics, 2009).
  4. Young Investigator award, “Density functional method including weak interactions: dispersion coefficients based on the local response approximation” (CREST International Symposium on Theory and Simulation of Complex Molecular Systems, Kyoto, 2009).
  5. 優秀講演賞、“弱い相互作用を記述する密度汎関数理論の開発:局所応答近似に基づく分散力計算”、(第3回分子科学討論会、2009).