論文一覧

論文一覧

 

  1. Yang Li,  Feng He, Takeshi Sato, and Kenichi L. Ishikawa, Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules,  J. Phys. Chem. A 2024, 128, 8, 1523–1532 (Feb19,2024)(DOI: 10.1021/acs.jpca.3c06799)
  2. Kenichi L. Ishikawa, Kevin C. Prince, and Kiyoshi Ueda, Control of Ion-Photoelectron Entanglement and Coherence Via Rabi Oscillations, J. Phys. Chem. A 2023, 127, 50, 10638–10646 (Dec. 12, 2023)(DOI: 10.1021/acs.jpca.3c06781)
  3. Yuki Orimo, Takeshi Sato, Kenichi L. Ishikawa, Use of Erfgau Potential for Simulations of Multielectron Dynamics in Intense Laser Pulses, J. Phys. Chem. A 2023, 127, 49, 10499–10505 (Nov. 30, 2023)(DOI: 10.1021/acs.jpca.3c06530)
  4. Takuya Maeyama, Hiroshi Hasegawa, Masahiro Tanaka, Nobuhisa Fukunishi,  Kenichi L. Ishikawa, Yusuke Watanabe, Shigekazu Fukuda, Linear-energy-transfer-independent nanoclay radio-fluorogenic gel dosimeter under energetic ion beams of 28Si14+, 40Ar18+, 56Fe26+, 132Xe54+, and 12C6+, Radiation Physics and Chemistry 216, March 2024, 111363 (31 Oct.2023)(DOI:10.1016/j.radphyschem.2023.111363)
  5. Takeshi Sato, Himadri PathakYuki OrimoKenichi L. IshikawaTime-dependent multiconfiguration self-consistent-field and time-dependent optimized coupled-cluster methods for intense laser-driven multielectron dynamics, Canadian Journal of Chemistry (14 May 2023)(DOI: 10.1139/cjc-2022-0297)
  6. Yuki Orimo, Takeshi Sato, Kenichi L. Ishikawa, Efficient simulation of multielectron dynamics in molecules under intense laser pulses: implementation of the multiconfiguration time-dependent Hartree–Fock method based on the adaptive finite element method, Canadian Journal of Chemistry (12 May 2023)(DOI: 10.1139/cjc-2022-0280)
  7. Hiroki Katow, Kenichi L. Ishikawa, Eigenmode analysis of the multiple temperature model: spectrum properties, hierarchical structures, and temperature inversion,  Applied Physics A, 129, 165, 1-17 (3 Feb.2023) (DOI: 10.1007/s00339-023-06429-z)
  8. Maeyama, T,  Mochizuki, A,  Yoshida, K,  Fukunishi, N,  Ishikawa, KL,  Fukuda, S.  Radio-fluorogenic nanoclay gel dosimeters with reduced linear energy transfer dependence for carbon-ion beam radiotherapy. Med Phys.  2022,  1- 13  (6 Nov. 2022). (DOI: 10.1002/mp.16092)
  9. Mizuki Tani, Kakeru Sasaki, Yasushi Shinohara, and Kenichi L. IshikawaEnhanced energy deposition and carrier generation in silicon induced by two-color intense femtosecond laser pulses, Phys. Rev. B  Vol. 106 Iss.19-15, 195141-1-13  (21 Nov. 2022) (DOL: 10.1103/PhysRevB.106.195141)
  10. E. V. Gryzlova, K. L. Ishikawa, et al. , Influence of an atomic resonance on the coherent control of the photoionization process, Phys. Rev. Research Vol. 4, 033231-1-9  (23 Sep. 2022)(DOI: 10.1103/PhysRevResearch.4.033231)
  11. Himadri PathakTakeshi Sato, and Kenichi L. IshikawaTime-dependent optimized coupled-cluster method with doubles and perturbative triples for first principles simulation of multielectron dynamics, Frontiers in Chemistry, Physical Chemistry and Chemical Physics section (13 Sep. 2022) .  (DOL: 10.3389/fchem.2022.98212)
  12. Takuya Matsubara, Yasuo Nabekawa, Kenichi L. Ishikawa, Kaoru Yamanouchi, and Katsumi Midorikawa, Attosecond Optical and Ramsey-Type Interferometry by Postgeneration Splitting of Harmonic Pulse, Ultrafast Science, Vol. 2022, Article ID 9858739-1-9,  (24 June, 2022).  (DOL: 10.34133/2022/9858739)
  13. Kotaro Imasaka, Yasushi Shinohara, Tomohiro Kaji, Keisuke Kaneshima, Nobuhisa Ishii, Jiro Itatani, Kenichi L. Ishikawa, and Satoshi Ashihara, High harmonic generation from GaSe in a deep-UV range well above the bandgap, Optics Continuum Vol.Issue 5,  pp. 1232-1247  (11 May, 2022) . (DOI: 10.1364/OPTCON.451394)
  14. Yuya Morimoto, Yasushi Shinohara, Kenichi L. Ishikawa, Peter Hommelhoff, Atomic real-space perspective of light-field-driven currents in graphene, New Journal of Physics 24, 033051-1~12    (31 Mar. 2022). (DOI: 10.1088/1367-2630/ac5c18)
  15. Shinya Mizukami, Yusuke Watanabe, Takahiro Mizoguchi, Tsutomu Gomi, Hidetake Hara, Hideyuki Takei, Nobuhisa Fukunishi, Kenichi L. Ishikawa, Shigekazu Fukuda and Takuya Maeyama, Whole Three-Dimensional Dosimetry of Carbon Ion Beams with an MRI-Based Nanocomposite Fricke Gel Dosimeter Using Rapid T1 Mapping Method, Gels 2021  7(4), 233 1-13  (25 Nov. 2021). (DOI: 10.3390/gels7040233)
  16. Yang Li, Takeshi Sato, and Kenichi L. Ishikawa, Implementation of a time-dependent multiconfiguration self-consistent-field method for coupled electron-nuclear dynamics in diatomic molecules driven by intense laser pulses, Phys. Rev. A 104, 043104-1-16  (5 Oct. 2021) . (DOI: 10.1103/PhysRevA.104.043104)
  17. Mizuki Tani, Tomohito Otobe, Yasushi Shinohara, and Kenichi L. IshikawaSemiclassical description of electron dynamics in extended systems, under intense laser fields, Phys. Rev. B  104, 075157-1-11 (30 Aug. 2021). (DOI:10.1103/PhysRevB.104.075157)
  18. H. PathakT. Sato, and K. L. IshikawaTime-dependent optimized coupled-cluster method for multielectron dynamics IV: Approximate consideration of the triple excitation amplitudes, J. Chem. Phys. 154,  234104-1-12  (17 June 2021).  (DOI:10.1063/5.0054743)
  19. Yohei Kobayashi , Takashi Takahashi, Tomoharu Nakazato, Haruyuki Sakurai, Hiroharu Tamaru, Kenichi L. Ishikawa, Kazuyuki Sakaue, and Shuntaro Tani, Fully Automated Data Acquisition for Laser Production Cyber-Physical System, in IEEE Journal of Selected Topics in Quantum Electronics, vol. 27 no. 6,  pp. 1-8  Art no. 8900108 (Nov.-Dec. 2021). (DOI:  10.1109/JSTQE.2021.3074516)
  20. Yuki OrimoOyunbileg TugsTakeshi SatoDaehyun You, Kiyoshi Ueda and Kenichi L IshikawaInterferometric extraction of photoionization-path amplitudes and phases from time-dependent multiconfiguration self-consistent-field simulations,  J. Phys. B: At. Mol. Opt. Phys. 54,  074001-1-20  (22 Apr, 2021) . (DOI: 10.1088/1361-6455/abe67e)
  21. Yuya Morimoto, Yasushi Shinohara, Mizuki Tani, Bo-Han Chen, Kenichi L. Ishikawa, and Peter Baum, Asymmetric single-cycle control of valence electron motion in polar chemical bonds, Optica Vol. Issue 3,  pp. 382-387  (20 Mar. 2021) . (DOI: 10.1364/OPTICA.414213)
  22. Takeshi Suzuki, Yasushi Shinohara, Yangfan Lu, Mari Watanabe, Jiadi Xu, Kenichi L. Ishikawa, Hide Takagi, Minoru Nohara, Naoyuki Katayama, Hiroshi Sawa, Masami Fujisawa, Teruto Kanai, Jiro Itatani, Takashi Mizokawa, Shik Shin, and Kozo Okazaki, Detecting electron-phonon coupling during photoinduced phase transition, Phys. Rev. B 103, L121105-1-6 (10 Mar. 2021) . (DOI;  10.1103/PhysRevB.103.L121105)
  23. Daehyun You, Oyunbileg Tugs, Yuki Orimo, Takeshi Sato , Kenichi L. Ishikawa, et al., New Method for Measuring Angle-Resolved Phases in Photoemission, Phys. Rev. X 10,  031070-1-14  (30 Sep. 2020). (DOI: 10.1103/PhysRevX.10.031070)
  24. V.V.Kim, G.S.Boltaev, M . Iqbal, N.A .Abbasi, H .Al-Harmi, I .S .Wahyutama, T. Sato, K .L .Ishikawa, R .A .Ganeev, and A. S .Alnase, Resonance enhancement of harmonics in the vicinity of 32 nm spectral range during propagation of femtosecond pulses through the molybdenum plasma, Journal of Physics B 53, 195401-1-12 (25 Aug. 2020) . (DOI: 10.1088/1361-6455/aba581)
  25. Himadri Pathak , Takeshi Sato  & Kenichi L. Ishikawa, Study of laser-driven multielectron dynamics of Ne atom using time-dependent optimised second-order many-body perturbation theory, Molecular Physics,  e1813910 ( 28 Aug 2020). (DOI:10.1080/00268976.2020.1813910)
  26. Yasuyuki Sanari, Hideki Hirori, Tomoko Aharen, Hirokazu Tahara, Yasushi Shinohara, Kenichi L. Ishikawa, Tomohito Otobe, Peiyu Xia, Nobuhisa Ishii, Jiro Itatani, Shunsuke A. Sato, and Yoshihiko Kanemitsu, Role of virtual band population for high harmonic generation in solids, Phys. Rev. B 102, 041125(R) -1-7  (30 July, 2020). (DOI:10.1103/PhysRevB.102.041125)
  27. Himadri PathakTakeshi Sato and Kenichi L. Ishikawa, Time-dependent optimized coupled-cluster method for multielectron dynamics. III. A second-order many-body perturbation approximation,  J. Chem. Phys. 153, 034110-1-9 (16 July, 2020).(DOI: 10.1063/5.0008789)
  28. Himadri Pathak, Takeshi Sato and Kenichi L. Ishikawa, Time-dependent optimized coupled-cluster method for multielectron dynamics. II. A coupled electron-pair approximation, J. Chem. Phys. 152, 124115-1-10 (27 March, 2020). (DOI: 10.1063/1.5143747)
  29. Michele Di Fraia, Oksana Plekan, Carlo Callegari, Kevin C. Prince, Luca Giannessi, Enrico Allaria, Laura Badano, Giovanni De Ninno, Mauro Trovò, Bruno Diviacco, David Gauthier, Najmeh Mirian, Giuseppe Penco, Primož Rebernik Ribič, Simone Spampinati, Carlo Spezzani, Giulio Gaio, Yuki Orimo, Oyunbileg Tugs, Takeshi Sato, Kenichi L. Ishikawa , Paolo Antonio Carpeggiani, Tamás Csizmadia, Miklós Füle, Giuseppe Sansone, Praveen KumarMaroju, Alessandro D’Elia, Tommaso Mazza, Michael Meyer, Elena V. Gryzlova, Alexei N. Grum-Grzhimailo, Daehyun You, and Kiyoshi Ueda, Complete Characterization of Phase and Amplitude of Bichromatic Extreme Ultraviolet Light,  Phys. Rev. Lett. 123, 213904 1~7 (22 November 2019). (DOI: 10.1103/PhysRevLett.123.213904)
  30. Daehyun You, Kiyoshi Ueda, Marco Ruberti, Kenichi L Ishikawa, Paolo Antonio Carpeggiani, Tamás Csizmadia, Lénárd Gulyás Oldal , Harshitha N G, Giuseppe Sansone, Praveen Kumar Maroju, Kuno Kooser, Carlo Callegari, Michele Di Fraia, Oksana Plekan, Luca Giannessi11, Enrico Allaria, Giovanni De Ninno, Mauro Trovò, Laura Badano, Bruno Diviacco, David Gauthier, Najmeh Mirian, Giuseppe Penco, Primož Rebernik Ribič, Simone Spampinati, Carlo Spezzani, Simone Di Mitri, Giulio Gaio and Kevin C Prince, A detailed investigation of single-photon laser enabled Auger decay in neon, New J.Phys.21(2019), 113036-1〜11 (18 November 2019). (DOI:10.1088/1367-2630/ab520d)
  31. Takuma Teramura, Takeshi Sato, and Kenichi L. Ishikawa, Implementation of a gauge-invariant time-dependent configuration-interaction-singles method for three-dimensional atoms, Phys. Rev. A 100, 043402-1~8  (4 October 2019). (DOI:10.1103/PhysRevA.100.043402)
  32. Yuki Orimo, Karoly Tokesi, Takeshi Sato, and Kenichi L. Ishikawa, Comparison between quantum and classical calculations for above threshold ionization of argon, Eur. Phys. J. D(2019)73, 153-1~5(25 July 2019). (DOI: 10.1140/epjd/e2019-100066-y)
  33. Yuki Orimo, Takeshi Sato, and Kenichi L. Ishikawa, Application of the time-dependent surface flux method to the time-dependent multiconfiguration self-consistent-field method, Phys. Rev. A 100, 013419-1~8  (29 July 2019). (DOI: 10.1103/PhysRevA.100.013419)
  34. Imam S. Wahyutama, Takeshi Sato, and Kenichi L. Ishikawa, Time-dependent multiconfiguration self-consistent-field study on resonantly enhanced high-order harmonic generation from transition-metal elements, Phys. Rev. A 99, 063420-1~7 (20 June 2019). (DOI: 10.1103/PhysRevA.99.06342)
  35. Hideki Hirori , Peiyu Xia, Yasushi Shinohara, Tomohito Otobe , Yasuyuki Sanari, Hirokazu Tahara, Nobuhisa Ishii , Jiro Itatani, Kenichi L. Ishikawa, Tomoko Aharen, Masashi Ozaki, Atsushi Wakamiya, and Yoshihiko Kanemitsu, High-order harmonic generation from hybrid organic–inorganic perovskite thin films, APL Mater. 7, 041107-1~4 (5Apr. 2019). (DOI: 10.1063/1.5090935)
  36. Yang Li, Takeshi Sato, and Kenichi L. Ishikawa, High-order harmonic generation enhanced by laser-induced electron recollision, Phys. Rev. A 99, 043401-1~5 (1Apr.2019). (DOI: 10.1103/PhysRevA.99.043401)
  37. Ryoji Anzaki, Yasushi Shinohara, Takeshi Sato, Kenichi Ishikawa, Gauge invariance beyond the electric dipole approximation, Phys. Rev. A 98, 063410-1~8 (Dec.,2018).(DOI:10.1103/PhysRevA.98.063410)
  38. Takuya Ikemachi, Yasushi Shinohara, Takeshi Sato, Junji Yumoto, Makoto Kuwata-Gonokami, and Kenichi L. Ishikawa, Time-dependent Hartree-Fock study of electron-hole interaction effects on high-order harmonic generation from periodic crystals, Phys. Rev. A 98, 023415-1~8 (17 August 2018). (DOI:10.1103/PhysRevA.98.023415)
  39. Keisuke Kaneshima, Yasushi Shinohara, Kengo Takeuchi, Nobuhisa Ishii, Kotaro Imasaka, Tomohiro Kaji, Satoshi Ashihara, Kenichi L. Ishikawa, and Jiro Itatani, Polarization-Resolved Study of High Harmonics from Bulk Semiconductors, Phys. Rev. Lett. 120, 243903-1~6 (June 2018).   (DOI: 10.1103/PhysRevLett.120.243903)
  40. Takeshi Sato, Takuma Teramura and Kenichi L. Ishikawa, Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method, Appl. Sci. 2018, 8(3), 433-1~14 (2018),(DOI: 10.3390/app8030433)
  41. Yuki Orimo, Takeshi Sato, Armin Scrinzi, and Kenichi L. Ishikawa, Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method, Phys.Rev. A 97, 023423-1~9 (Feb.2018). (DOI:10.1103/PhysRevA.97.023423)
  42. Takuya Maeyama, Yasuhiro Ishida, Yoshihiro Kudo, Kazuaki Fukasaku, Kenichi L. Ishikawa, Nobuhisa Fukunishi, Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix, Radiation Physics and Chemistry 146, 121~125(2018). (DOI: 10.1016/j.radphyschem.2018.01.014)
  43. Takeshi Sato, Himadri Pathak, Yuki Orimo, Kenichi L. Ishikawa, Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics, The Journal of Chemical Physics, 148, 051101-1~5 (2018). (DOI: 10.1063/1.5020633)
  44. Ryoji Anzaki, Takeshi Sato, Kenichi L. Ishikawa A Fully General Time-Dependent Multiconfiguration Self-Consistent-Field Method for the Electron-Nuclear Dynamics, Phys. Chem. Chem. Phys. 19, 22008~22015 (2017). (DOI: 10.1039/C7CP02086D)
  45. D. Iablonskyi, K. Ueda, K. L. Ishikawa, A. S. Kheifets, P. Carpeggiani, M. Reduzzi, H. Ahmadi, A. Comby, G. Sansone, T. Csizmadia, S. Kuehn, E. Ovcharenko, T.Mazza, M. Meyer, A. Fischer, C. Callegari, O. Plekan, P. Finetti, E. Allaria, E. Ferrari, E. Roussel, D. Gauthier, L. Giannessi, and K. C. Prince, Observation and Control of Laser-Enabled Auger Decay, Phys. Rev. Lett. 119, 073203-1~5 (Aug., 2017). (DOI: 10.1103/PhysRevLett.119.073203)
  46. Iliya Tikhomirov, Takeshi Sato, and Kenichi L. Ishikawa, High-harmonic generation enhanced by dynamical electron correlation, Phys. Rev. Lett. 118, 203202-1~5 (May, 2017).  (DOI: 10.1103/PhysRevLett.118.203202)
  47. Takuya Ikemachi, Yasushi Shinohara, Takeshi Sato, Junji Yumoto, Makoto Kuwata-Gonokami, and Kenichi L. Ishikawa, Trajectory analysis of high-order-harmonic generation from periodic crystals, Phys. Rev. A 95, 043416-1~8 (Apr. 2017). (DOI:10.1103/PhysRevA.95.043416)
  48. Takuya Maeyama, Nobuhisa Fukunishi, Kenichi L Ishikawa, Kazuaki Fukasaku, and Shigekazu Fukuda, An organic-gelatin-free nanocomposite Fricke gel dosimeter, J. Phys. Chem. B 121, 4238~8656 (Mar., 2017). (DOI: 10.1021/acs.jpcb.6b11936)
  49. Fabian Lackner, Iva Březinová, Takeshi Sato, Kenichi L. Ishikawa, and Joachim Burgdörfer, High-harmonic spectra from time-dependent two-particle reduced-density-matrix theory, Phys. Rev. A 95, 033414-1~13 (Mar.  2017). (DOI: 10.1103/PhysRevA.95.033414)
  50. T. Sato, K. L. Ishikawa, I. Březinová, F. Lackner, S. Nagele, and J. Burgdörfer, Time-dependent complete-active-space self-consistent-field method for atoms: Application to high-order harmonic generation, Phys. Rev. A 94, 023405-1~14 (Aug.  2016). (DOI: 10.1103/PhysRevA.94.023405)
  51. T. Maeyama, N. Fukunishi, K. L. Ishikawa, K. Fukasaku, and S. Fukuda, Radiological properties of nanocomposite Fricke gel dosimeters for heavy ion beams, J. Radiat. Res. 57, 318~324 (Mar. 2016). (DOI: 10.1093/jrr/rrw025)
  52. R. Sawada, T. Sato, and K. L. Ishikawa, Implementation of the multiconfiguration time-dependent Hartree-Fock method for general molecules on a multi-resolution Cartesian grid, Phys. Rev. A 93, 023434 (Feb., 2016). (DOI: 10.1103/PhysRevA.93.023434)
  53. T. Furuta, T. Maeyama, K. L. Ishikawa, N. Fukunishi, K. Fukasaku, S. Takagi, S. Noda, R. Himeno, and S. Hayashi, Comparison between Monte Carlo simulation and measurement with a 3D polymer gel dosimeter for dose distributions in biological samples, Phys. Med. Biol. 60, 6531-6546 (2015). (DOI: 10.1088/0031-9155/60/16/6531)
  54. K. L. Ishikawa and T. Sato, A Review on Ab Initio Approaches for Multielectron Dynamics, IEEE J. Sel. Topics Quantum Electron. 21(5), 8700916-1~16 (invited review) (2015). (DOI: 10.1109/JSTQE.2015.2438827)
  55. T. Sato and K. L. Ishikawa, Time-dependent multiconfiguration self-consistent-field method based on occupation-restricted multiple-active-space model for multielectron dynamics in intense laser fields, Phys. Rev. A 91. 023417-1~15 (2015). (DOI: 10.1103/PhysRevA.91.023417)
  56. F. Lackner, I. Břesinová, T. Sato, K. L. Ishikawa, and J. Burgdörfer, Propagating two-particle reduced density matrices without wavefunctions, Phys. Rev. A 91, 023412-1~17 (Feb., 2015). (DOI: 10.1103/PhysRevA.91.023412)
  57. T. Maeyama, N. Fukunishi, K. L. Ishikawa, T. Furuta, K. Fukasaku, S. Takagi, S. Noda, R. Himeno, and S. Fukuda, Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation, Radiation Physics and Chemistry 107, 7~15 (Feb., 2015). (DOI: 10.1016/j.radphyschem.2014.09.001)
  58. T. Sato and K. L. Ishikawa, The structure of approximate two electron wavefunction in intense laser driven ionization dynamics, J. Phys. B, 47, 204031-1~12 (Oct., 2014). (DOI: 10.1088/0953-4075/47/20/204031)
  59. R. Sawada, T. Sato, and K. L. Ishikawa, Analysis of strong-field enhanced ionization of molecules using Bohmian trajectories, Phys. Rev. A 90, 023404-1~8 (Aug., 2014). (DOI: 10.1103/PhysRevA.90.023404)
  60. K. L. Ishikawa, A. K. Kazansky, N. M. Kabachnik, and K. Ueda, Theoretical study of pulse delay effects in the photoelectron angular distribution of near-threshold EUV+IR two-photon ionization of atoms, Phys. Rev. A 90, 023408-1~11 (Aug., 2014). (DOI: 10.1103/PhysRevA.90.023408)
  61. T. Maeyama, N. Fukunishi, K. L. Ishikawa, T. Furuta, K. Fukasaku, S. Takagi, S. Noda, R. Himeno, and S. Fukuda, Diffusion-free and linear-energy-transfer-independent nanocomposite Fricke gel dosimeter, Radiat. Phys. Chem. 96, 92~96 (Mar., 2014). (DOI: 10.1016/j.radphyschem.2013.09.004)
  62. S. Mondal, H. Fukuzawa, K. Motomura, T. Tachibana, K. Nagaya, T. Sakai, K. Matsunami, S. Yase, M. Yao, S. Wada, H. Hayashita, N. Saito, C. Callegari, K. C. Prince, C. Miron, M. Nagasono, T. Togashi, M. Yabashi, K. L. Ishikawa, A. K. Kazansky, N. M. Kabachnik, and K. Ueda, Pulse-delay effects in the angular distribution of near-threshold EUV + IR two-photon ionization of Ne, Phys. Rev. A 89, 013415-1~6 (Jan., 2014). (DOI: 10.1103/PhysRevA.89.013415)
  63. S. Mondal, H. Fukuzawa, K. Motomura, T. Tachibana, K. Nagaya, T. Sakai, K. Matsunami, S. Yase, M. Yao, S. Wada, H. Hayashita, N. Saito, C. Callegari, K. C. Prince, P. O’Keeffe, P. Bolognesi, L. Avaldi, C. Miron, M. Nagasono, T. Togashi, M. Yabashi, K. L. Ishikawa, I. P. Sazhina, A. K. Kazansky, N. M. Kabachnik and K. Ueda, Photoelectron angular distributions in infrared one-photon and two-photon ionization of FEL-pumped Rydberg states of helium, J. Phys. B 46, 205601-1~7 (Oct., 2013). (DOI: 10.1088/0953-4075/46/20/205601)
  64. T. Sato and K. L. Ishikawa, Time-dependent complete-active-space self-consistent field method for multielectron dynamics in intense laser fields, Phys. Rev. A 88, 023402-1~15 (Aug., 2013). (DOI: 10.1103/PhysRevA.88.023402)
  65. R. Ma, K. Motomura, K. L. Ishikawa, S. Mondal, H. Fukuzawa, A. Yamada, K. Ueda, K. Nagaya, S. Yase, Y. Mizoguchi, M. Yao, A. Rouze, A. Hundermark, M. J. J. Vrakking, P. Johnsson, M. Nagasono, K. Tono, T. Togashi, Y. Senba, H. Ohashi, M. Yabashi, and T. Ishikawa, Photoelectron Angular Distributions for Two-photon Ionization of Helium by Ultrashort Extreme Ultraviolet Free Electron Laser Pulses, J. Phys. B 46, 164018-1~6 (Aug., 2013). (DOI: 10.1088/0953-4075/46/16/164018)
  66. K. L. Ishikawa, Electronic response of graphene to an ultrashort intense terahertz radiation pulse, New J. Phys. 15, 055021-1~27 (May, 2013). (DOI: 10.1088/1367-2630/15/5/055021)
  67. K. L. Ishikawa and K. Ueda, Photoelectron angular distribution and phase in two-photon single ionization of H and He by a femtosecond and attosecond extreme-ultraviolet pulse, Appl. Sci. 3, 189~213 (Mar., 2013). (DOI: 10.3390/app3010189)
  68. Y. Furukawa, Y. Nabekawa, T. Okino, A. A. Eilanlou, E. J. Takahashi, Pengfei Lan, K. L. Ishikawa, T. Sato, K. Yamanouchi, and K. Midorikawa, Resolving vibrational wave-packet dynamics of D_2^+ using multicolor probe pulses, Opt. Lett. 37, 2922~2924 (2012). (DOI: 10.1364/OL.37.002922)
  69. S. Sukiasyan, K. L. Ishikawa, and M. Ivanov, Attosecond cascades and time delays in one-electron photoionization, Phys. Rev. A 86, 033423-1~6 (2012). (DOI: 10.1103/PhysRevA.86.033423)
  70. S. Shiozaki, K. L. Ishikawa, and S. Takagi, Numerical study on platelet adhesion to vessel walls using the kinetic Monte Carlo method, J. Biomed. Sci. Eng. 7, 275~283 (2012). (DOI: 10.1299/jbse.7.275)
  71. K. T. Kim, D. H. Ko, J. Park, N. N. Choi, C. M. Kim, K. L. Ishikawa, J. Lee, and C. H. Nam, Amplitude and phase reconstruction of electron wave packets for probing ultrafast photoionization dynamics, Phys. Rev. Lett. 108, 093001-1~5 (2012).
  72. K. L. Ishikawa and K. Ueda, Competition of resonant and nonresonant paths in resonance-enhanced two-photon single ionization of He by an ultrashort extreme-ultraviolet pulse, Phys. Rev. Lett. 108, 033003-1~5 (2012).
  73. D. G. Arbó, K. L. Ishikawa, E. Persson, and J. Burgdörfer, Doubly differential diffraction at a time grating in above-threshold ionization: Intracycle and intercycle interferences, Nucl. Instr. Meth. B 279, 24~30 (2012). (DOI: 10.1016/j.nimb.2011.10.030)
  74. K. L. Ishikawa, K. Niita, K. Takeda, N. Fukunishi, and S. Takagi, Domain-division Monte Carlo dose calculation method for particle therapy, Prog. Nucl. Sci. Tech.2, 197-200 (2011).
  75. R. Moshammer, Th. Pfeifer, A. Rudenko, Y. H. Jiang, L. Foucar, M. Kurka, K. U. Kühnel, C. D. Schröter, J. Ullrich, O. Herrwerth, M. F. Kling, X.-J. Liu, K. Motomura, H. Fukuzawa, A. Yamada, K. Ueda, K. L. Ishikawa, K. Nagaya, H. Iwayama, A. Sugishima, Y. Mizoguchi, S. Yase, M. Yao, N. Saito, A. Belkacem, M. Nagasono, A. Higashiya, M. Yabashi, T. Ishikawa, H. Ohashi, H. Kimura, and T. Togashi, Second-order autocorrelation of XUV FEL pulses via time resolved two-photon single ionization of He, Opt. Express 19(22), 21698~21706 (2011).
  76. S. Fang, T. Tanigawa, K. L. Ishikawa, N. Karasawa, and M. Yamashita, Isolated attosecond pulse generation by monocycle pumping: the use of a harmonic region with the minimum dispersion, J. Opt. Soc. Am. B 28(1), 1~9 (2011).
  77. A. A. Eilanlou, Y. Nabekawa, K. L. Ishikawa, H. Takahashi, E. J. Takahashi, and K. Midorikawa, Frequency modulation of high-order harmonic fields with synthesis of two-color laser fields, Opt. Express 18 (24), 24619~24631 (2010).
  78. K. L. Ishikawa, Nonlinear optical response of graphene in time domain, Phys. Rev. B 82, 201402(R)-1~4 (2010).
  79. D. G. Arbo, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdorfer, Diffraction at a time grating in above-threshold ionization: The influence of the Coulomb potential, Phys. Rev. A 82, 043426-1~11 (2010).
  80. Y. Nabekawa, A. A. Eilanlou, Y. Furukawa, K. L. Ishikawa, H. Takahashi, K. Midorikawa, Multi-terawatt laser system generating 12-fs pulses at 100 Hz repetition rate, Appl. Phys. B 101 (3), 523~534 (2010).
  81. T. Shirakawa, K. L. Ishikawa, S. Suzuki, Y. Yamada, and H. Takahashi, Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm, Opt. Express 18, 8383~8391 (2010).
  82. D. G. Arbo, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdorfer, Intracycle and intercycle interferences in above-threshold ionization: The time grating, Phys. Rev. A 81, 021403(R)-1~4 (2010).
  83. K. L. Ishikawa, Y. Kawazura, and K. Ueda, Two-photon ionization of atoms by ultrashort laser pulses, J. Mod. Opt. 57(11), 999~1007 (2010).
  84. K. L. Ishikawa, E. J. Takahashi, and K. Midorikawa, Wavelength dependence of high-order harmonic generation with independently controlled ionization and ponderomotive energy, Phys. Rev. A 80, 011807(R)-1~4 (2009).
  85. K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdorfer, Fine-scale oscillations in the wavelength and intensity dependence of high-order harmonic generation: Connection with channel closings, Phys. Rev. A 79, 033411-1~10 (2009).
  86. E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, Coherent water window x-ray by phase-matched high-order harmonic generation in neutral media, Phys. Rev. Lett. 101, 253901-1~4 (2008).
  87. A. A. Eilanlou, Y. Nabekawa, K. L. Ishikawa, H. Takahashi, and K. Midorikawa, Direct amplification of terawatt sub-10-fs pulses in a CPA system of Ti:sapphire laser, Opt. Express 16, 13431~13438 (2008).
  88. K. Schiessl, K. L. Ishikawa, E. Persson, and J. Burgdorfer, Wavelength dependence of high-harmonic generation from ultrashort pulses, J. Mod. Opt. 55, 261~-2630 (2008).
  89. K. Schiessl, K. L. Ishikawa, E. Persson, and J. Burgdorfer, Quantum path interference in the wavelength dependence of high-harmonic generation, Phys. Rev. Lett. 99, 253903-1~4 (2007).
  90. 神保花,矢田部力,石川顕一,山田泰史,増田浩二「遺伝的アルゴリズムと時間領域差分法を用いたサブ波長回折光学素子の設計」,電気学会論文誌C 127, 1298 (2007).
  91. E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, Dramatic enhancement of high-order harmonic generation, Phys. Rev. Lett. 99, 053904-1~4 (2007).
  92. K. L. Ishikawa, E. J. Takahashi, and K. Midorikawa, Single-attosecond pulse generation using a seed harmonic pulse train, Phys. Rev. A 75, 021801(R)-1~4 (2007).
  93. K. L. Ishikawa, Temporal Young’s interference experiment by attosecond double and triple soft-x-ray pulses, Phys. Rev. A 74, 023806-1~4 (2006).
  94. K. L. Ishikawa and K. Midorikawa, Above-threshold double ionization of helium with attosecond intense soft x-ray pulses, Phys. Rev. A 72, 013407-1~3 (2005).
  95. H. Hasegawa, E. J. Takahashi, Y. Nabekawa, K. L. Ishikawa, and K. Midorikawa, Multiphoton ionization of He by using intense high-order harmonics in the soft-x-ray region, Phys. Rev. A 71, 023407-1~5 (2005).
  96. K. L. Ishikawa, Efficient photoemission and ionization of He+ by a combined fundamental laser and high-order harmonic pulse, Phys. Rev. A 70, 013412-1~9 (2004).
  97. T. Minegishi, H. Kumagai, Y. Urata, K. L. Ishikawa, M. Nakazawa, and K. Midorikawa, Second harmonic generation of pseudo mode-locked multi ten milliwatt picosecond Ti:sapphire laser, Sci. Tech. Adv. Materials 5, 593~596 (2004).
  98. D. Ishii, K. L. Ishikawa, T. Fujita, and M. Nakazawa, Stochastic modelling for gradient sensing by chemotactic cells, Sci. Tech. Adv. Materials 5, 715~718 (2004).
  99. K. L. Ishikawa, Enhanced photoemission and ionization of He+ by simultaneous irradiation of fundamental laser and high-order harmonic pulses, Appl. Phys. B 78, 855~858 (2004).
  100. K. Ishikawa, Photoemission and ionization of He+ under simultaneous irradiation of fundamental laser and high-order harmonic pulses, Phys. Rev. Lett. 91, 043002-1~4 (2003).
  101. H. Kumagai, S.-H. Cho, K. Ishikawa, K. Midorikawa, M. Fujimoto, S. Aoshima, and Y. Tsuchiya, Visualizing complex propagation of a femtosecond laser pulse in a dispersive transparent bulk material, J. Opt. Soc. Am. B. 20, 597 (2003).
  102. K. Ishikawa, H. Kumagai, and K. Midorikawa, High-power regime of femtosecond-laser pulse propagation in silica: multiple-cone formation, Phys. Rev. E 66, 056608-1~8 (2002).
  103. H. Kawano, K. Ishikawa, A. Suda, and K. Midorikawa, Polarization of multiple rotational Raman sidebands from hydrogen gas via delayed four-wave Raman mixing in the femtosecond regime, Opt. Lett. 27, 1917 (2002).
  104. K. Ishikawa, H. Kawano, and K. Midorikawa, Polarization effect in impulsive rotational Raman scattering, Phys. Rev. A 66, 031802(R)-1~4 (2002).
  105. K. Ishikawa and K. Midorikawa, Two-photon ionization of He+ as a nonlinear optical effect in the soft-x-ray region, Phys. Rev. A 65, 043405-1~2 (2002).
  106. K. Ishikawa and K. Midorikawa, Coherent control of extreme uv absorption and photoemission by the simultaneous irradiation of ultrashort extreme uv and laser pulses, Phys. Rev. A 65, 031403(R)-1~4 (2002).
  107. K. Ishikawa and T. Blenski, Rare gas cluster explosion in a strong laser field, Laser Phys. 11, 269~277 (2001).
  108. K. Ishikawa and T. Blenski, Explosion dynamics of rare gas clusters in an intense laser field, Phys. Rev. A 62, 063204-1~11 (2000).
  109. K. Ishikawa and T. Blenski, Particle-in-cell simulations of multiple ionization of small molecules in a strong laser field, Phys. Rev. A 61, 063408-1~11 (2000).
  110. W. Theobald, R. Haessner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft and K. Ishikawa, Electron densities, temperatures, and the dielectric function of femtosecond-laser-produced plasmas, Phys. Rev. E 59, 3544-3553 (1999).
  111. K. Ishikawa, B. U. Felderhof, T. Blenski and B. Cichocki, Photoabsorption by an ion immersed in a plasma at any temperature, J. Plasma Phys. 60, 787~810 (1998).
  112. K. Ishikawa and B. U. Felderhof, High-frequency photoabsorption by an ion immersed in a plasma as calculated from Bloch’s hydrodynamic model, Physica A 253, 541~554 (1998).
  113. K. Ishikawa and B. U. Felderhof, Dielectric response in Bloch’s hydrodynamic model of an electron-ion plasma, Physica A 250, 506~516 (1998).
  114. T. Blenski and K. Ishikawa, Pressure ionization in the spherical ion-cell model of dense plasmas and a pressure formula in the relativistic Pauli approximation, Phys. Rev. E 51, 4869~4881 (1995).
  115. T. Blenski and K. Ishikawa, Relation between the super-transition-array method in opacity calculations and the Hartree-Fock approximation at nonzero temperature, Phys. Rev. E 51, 1602~1604 (1995).
  116. K. Ishikawa, T. Iguchi and M. Nakazawa, A study on the possibility of a laser-induced gamma-ray laser, 東京大学工学部紀要(B) XLI, 583~594 (1992).
  117. P-Y. Jiang, Y. Katsumura, M. Domae, K. Ishikawa, R. Nagaishi, K. Ishigure and Y. Yoshida, Pulse radiolysis study of concentrated phosphoric acid solutions, J. Chem. Soc. Faraday trans. 88, 3271~3279 (1992).
  118. P-Y. Jiang, Y. Katsumura, R. Nagaishi, M. Domae, K. Ishikawa, K. Ishigure and Y. Yoshida, Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals, J. Chem. Soc. Faraday trans. 88, 1599~1603 (1992).

Reviews

  1. Carlo Callegari, Alexei N.Grum-Grzhimailo, Kenichi L.Ishikawa, Kevin C.Prince, Giuseppe Sansone, Kiyoshi Ueda, Atomic, molecular and optical physics applications of longitudinally coherent and narrow bandwidth Free-Electron Lasers, Physics Reports 904, 1-59 (12 Apr. 2021) (DOI: 10.1016/j.physrep.2020.12.002)